
	

https://baduzokenit.godoxevez.com/866311352425233305703184246550501220411477?gaxejanidigozukajugelugemeluruleragonewakuvujaludawalisuzot=moxofelofedepunazibegotafalesojasavivalejewikikovuxazufilafajezugimejulajaxovatezekitizezewalatewilolagidukegazadorisuvawudogabepidikuritajizakufuxafuworoluvilitakamoteruwalifijupenakamutirujazozusolesijunaju&utm_term=what+is+boundary+value+analysis&vekolejamakobazawijagixisisapekulupus=xujamemotetawawobetitonarevenaxujoraraginimavurofajepejegexosasutujuxijevajemunuvobunilijatofegodogofinepajimasuwututiruviwogojotagovol

Share	copy	and	redistribute	the	material	in	any	medium	or	format	for	any	purpose,	even	commercially.	Adapt	remix,	transform,	and	build	upon	the	material	for	any	purpose,	even	commercially.	The	licensor	cannot	revoke	these	freedoms	as	long	as	you	follow	the	license	terms.	Attribution	You	must	give	appropriate	credit	,	provide	a	link	to	the	license,
and	indicate	if	changes	were	made	.	You	may	do	so	in	any	reasonable	manner,	but	not	in	any	way	that	suggests	the	licensor	endorses	you	or	your	use.	ShareAlike	If	you	remix,	transform,	or	build	upon	the	material,	you	must	distribute	your	contributions	under	the	same	license	as	the	original.	No	additional	restrictions	You	may	not	apply	legal	terms	or
technological	measures	that	legally	restrict	others	from	doing	anything	the	license	permits.	You	do	not	have	to	comply	with	the	license	for	elements	of	the	material	in	the	public	domain	or	where	your	use	is	permitted	by	an	applicable	exception	or	limitation	.	No	warranties	are	given.	The	license	may	not	give	you	all	of	the	permissions	necessary	for
your	intended	use.	For	example,	other	rights	such	as	publicity,	privacy,	or	moral	rights	may	limit	how	you	use	the	material.	Coding	Ground	For	Developers	Code,	Edit,	Run	and	Share	Ignite	your	coding	potential	on	Coding	Ground	-	an	immersive	online	platform	for	hands-on	learning,	collaboration,	and	skill	development.	Java	Compiler	Python
Compiler	C++	Compiler	HTML	Editor	Share	copy	and	redistribute	the	material	in	any	medium	or	format	for	any	purpose,	even	commercially.	Adapt	remix,	transform,	and	build	upon	the	material	for	any	purpose,	even	commercially.	The	licensor	cannot	revoke	these	freedoms	as	long	as	you	follow	the	license	terms.	Attribution	You	must	give
appropriate	credit	,	provide	a	link	to	the	license,	and	indicate	if	changes	were	made	.	You	may	do	so	in	any	reasonable	manner,	but	not	in	any	way	that	suggests	the	licensor	endorses	you	or	your	use.	ShareAlike	If	you	remix,	transform,	or	build	upon	the	material,	you	must	distribute	your	contributions	under	the	same	license	as	the	original.	No
additional	restrictions	You	may	not	apply	legal	terms	or	technological	measures	that	legally	restrict	others	from	doing	anything	the	license	permits.	You	do	not	have	to	comply	with	the	license	for	elements	of	the	material	in	the	public	domain	or	where	your	use	is	permitted	by	an	applicable	exception	or	limitation	.	No	warranties	are	given.	The	license
may	not	give	you	all	of	the	permissions	necessary	for	your	intended	use.	For	example,	other	rights	such	as	publicity,	privacy,	or	moral	rights	may	limit	how	you	use	the	material.	Boundary	value	analysis	typically	shortened	to	BVA	is	a	commonplace	black	box	testing	technique.	The	approach	tests	for	software	defects	by	verifying	input	values	on	the
boundaries	of	allowable	ranges.This	article	will	explore	what	boundary	analysis	testing	is,	why	its	useful,	and	explore	some	different	approaches,	techniques,	and	various	boundary	testing	tools.	What	is	boundary	value	analysis	in	software	testing?Boundary	value	analysis	is	a	type	of	functional	testing.	That	type	of	testing	is	concerned	with	verifying
that	each	function	of	the	software	meets	requirements	and	specifications.	In	the	case	of	boundary	testing,	this	functionality	includes	how	the	software	deals	with	various	inputs.BVA	is	a	software	testing	technique	that	validates	how	software	will	respond	to	inputs	at	or	around	the	edge	of	input	boundaries.	In	essence,	each	input	has	allowable	ranges.
For	example,	you	might	have	a	password	box	for	a	login	that	accepts	passwords	between	8	and	12	characters.	Boundary	testing	will	test	for	passwords	with	character	lengths	of	7,	8,	12,	and	13.The	thinking	here	is	that	the	boundaries	of	the	limits,	i.e.,	7,	8,	12,	and	13,	are	more	likely	to	throw	errors	than	numbers	inside	the	boundaries,	such	as	9,	10,
and	11.	While	the	benefits	here	might	seem	marginal	in	an	example	of	a	field	box	that	accepts	between	8	and	12	characters,	they	become	more	obvious	when	you	need	to	write	test	cases	for	field	boxes	that	take	between	1	and	20	characters	or	numbers	between	1	and	1000,	and	so	on.So,	to	save	time	and	reduce	the	number	of	test	cases	within
functional	testing,	boundary	value	analysis	looks	at	values:At	minimum	valueDirectly	below	the	minimum	valueAt	maximum	valueDirectly	above	the	maximum	value	Benefits	of	boundary	value	analysis	in	testingBoundary	testing	has	several	compelling	benefits	for	QA	teams.#1.	Better	software	qualityThe	nightmare	scenario	for	testers	is	bugs	and
defects	that	go	unnoticed.	With	so	many	things	to	verify,	some	defects	can	slip	through	the	cracks.	Boundary	testing	proves	the	functionality	of	areas	in	the	software	that	are	more	likely	to	contain	errors,	which	leads	to	better	software	builds	and,	ultimately,	a	more	reliable,	stable	application.#2.	Increased	test	coverageBVA	in	software	testing	is	so
useful	because	it	helps	cut	down	on	the	number	of	test	cases	required	for	comprehensive	test	coverage.	Boundary	value	analysis	ensures	that	important	values	and	that	each	value	can	be	tested	more	thoroughly.#3.	Early	defect	detectionBoundary	value	testing	is	part	of	an	approach	that	prioritizes	early	defect	detection.	Catching	bugs	early	in	the
process	means	that	development	teams	can	save	time	and	money	without	even	mentioning	the	fact	that	its	far	easier	to	remedy	bugs	in	the	early	stages	of	development.#4.	EfficiencyBoundary	value	testing	is	super	efficient	because	it	mitigates	the	requirement	for	a	lot	of	test	cases.	Indeed,	reducing	inputs	down	to	all	but	the	most	likely	to	cause
issues	can	significantly	save	testing	teams	time	both	writing	and	executing	test	cases.	Drawbacks	of	boundary	value	analysis	in	testingOf	course,	no	software	testing	technique	is	perfect	or	without	its	limitations.	While	boundary	value	analysis	has	many	benefits,	there	are	some	constraints	to	working	with	this	functional	testing	technique.#1.	Narrow
scopeBVA	works	on	the	boundaries	or	edges	of	valid	data	inputs.	In	general,	it	ignores	the	middle	inputs	by	reasoning	that	they	will	be	fine	if	the	valid	inputs	on	the	edges	are.	However,	its	not	without	precedent	that	some	of	these	values	that	are	untested	could	have	issues.#2.	Overly	simplisticBoundary	analysis	is	about	making	things	simple.	While
this	works	for	reducing	test	cases,	the	approach	is	less	suitable	for	highly	complex	domains	with	multiple	boundaries,	interactions,	or	dependencies.	Indeed,	it	can	struggle	to	handle	complex	scenarios,	meaning	you	need	to	explore	other	techniques	for	adequate	coverage.#3.	AssumptionsAny	process	that	attempts	to	boost	efficiency	risks	missing	out
on	particular	errors.	BVA	focuses	on	boundaries	at	the	edge	of	a	range.	In	doing	so,	it	must	make	assumptions	about	other	inputs	that	fall	on	either	side	of	boundary	values.	Testers	must	strike	a	balance	between	efficiency	and	coverage,	which	poses	a	slight	risk	if	boundary	testing	is	used	alone.#4.	Reliance	on	accurate	specifications	and
requirementEfficient	BVA	is	dependent	on	the	quality	and	accuracy	of	specifications	and	requirement	documentation.	Any	unchecked	errors	in	these	documents	can	bleed	into	boundary	value	testing	and	lead	to	specific	errors	going	unchecked	and	undiscovered	until	the	critical	late	stages	of	development.#5.	Reliance	on	equivalence
classesPerforming	thorough	BVA	requires	a	strong	working	knowledge	of	equivalence	classes.	Setting	these	classes	accurately	requires	experience	and	some	background	information	of	the	application.	Challenges	of	boundary	value	analysis	in	software	testingBy	now,	you	should	be	fairly	clear	about	the	pros	and	cons	of	boundary	testing.	However,	if
you	want	to	implement	the	approach	into	your	own	software	testing,	you	must	also	be	aware	of	the	various	challenges	that	you	must	overcome.Here	are	some	of	the	challenges	of	implementing	boundary	value	testing	in	software	testing.	#1.	Outlining	boundariesIdentifying	boundaries	within	simple	systems	poses	little	challenges	for	competent
testers.	However,	there	are	more	complex	situations,	such	as:Complex	input	domains	with	diverse	input	variables	or	intricate	relationshipsUndocumented	boundaries	that	have	not	been	clearly	outlined	in	specification	documentsDynamic	boundaries	that	change	based	on	user	actions	or	other	conditions	#2.	Ambiguous	requirementsPoorly	written	or
unclear	requirement	documents	can	hinder	the	identification	of	boundary	values.	Clarity,	completeness,	and	a	commitment	to	exhaustive	specification	documents	take	time,	but	they	will	pay	off	in	the	end.	#3.	ExpertiseBoundary	value	analysis	can	be	deceptively	complex.	Indeed,	testing	teams	need	personnel	with	experience	and	knowledge	of	the
field	to	understand	the	subtle	nuances	of	the	technique.	Whats	more,	testers	need	to	bring	some	knowledge	of	the	software	to	bear	or,	at	minimum,	have	reliable	specification	documents	to	fall	back	on.	IS	YOUR	COMPANY	IN	NEED	OF	ENTERPRISE	LEVEL	TASK-AGNOSTIC	SOFTWARE	AUTOMATION?	#4.	ErrorsBoundary	analysis	seeks	to	strip
back	the	number	of	test	cases	required	to	verify	valid	and	invalid	inputs.	However,	defects	that	lie	outside	the	testing	range	can	easily	go	unnoticed.	Moreover,	off-by-one	errors	are	common	coding	mistakes	that	can	occur	at	or	close	to	the	boundaries.	Testers	must	be	conscious	of	these	scenarios	and	make	provisions	for	testing.	#5.	Test	case
explosionWith	multiple	input	boundaries	at	play,	test	cases	can	soon	become	complex	and	multiply	out	of	control.	In	these	situations,	the	time	and	money	that	you	can	save	with	boundary	testing	are	lost,	undermining	the	benefits	of	the	solution.	Complex	software	builds	with	lots	of	combinations	or	permutations	can	have	a	similar	effect.	#6.	Analysis
tool	limitationsSoftware	test	automation	tools	can	help	teams	perform	adequate	boundary	value	analysis.	However,	even	in	the	best	cases,	these	tools	require	some	manual	intervention	for	both	testing	and	test	creation.	This	situation	can	be	exacerbated	for	complex	builds	with	multi-variable	interactions.	Different	types	of	boundary	value	testing	in
software	testingIn	the	book	Software	Testing:	A	Craftsmans	Approach,	the	authors	Paul	C.	Jorgensen	and	Byron	DeVries	describe	four	different	types	of	boundary	value	testing,	which	are:	1.	Normal	Boundary	Value	Testing	(NBVT)Tests	valid	input	values	at	edges	of	the	input	domainExplores	minimum	and	maximum	values	alongside	inputs	just	above
and	below	the	boundaryThis	is	the	classic	type	of	boundary	value	analysis	2.	Robust	Boundary	Value	Testing	(RBVT)Similar	to	NBVT	above,	but	includes	invalid	inputs,	tooTests	at	and	just	beyond	boundaries,	but	also	accounts	for	invalid	inputsFocuses	on	finding	errors	from	extreme	or	unexpected	outputs	3.	Worst-case	Boundary	Value	Testing
(WBVT)Verifies	software	behavior	using	extreme	valid	and	invalid	valuesExplores	values	at	the	edge	of	input	domains	and	values	beyond	these	boundariesSeeks	to	understand	software	behavior	under	more	extreme	conditions	4.	Robust	Worst-case	Boundary	Value	Testing	(RWBVT)Uses	a	blend	of	RBVT	and	WBVT	for	the	most	thorough	boundary
value	testingTests	valid	and	invalid	input	values	at	both	typical	and	extreme	boundariesOffers	the	best	opportunity	to	find	boundary-related	defects	These	approaches	differ	in	comprehensiveness,	with	RWBVT	being	the	most	thorough.	However,	testers	must	acknowledge	the	extra	investment	in	both	time	and	effort	required	to	unlock	this	additional
level	of	defect	discovery.	Equivalence	partitioning	and	boundary	value	analysis:	similarities	and	differencesEquivalence	partitioning	and	boundary	value	analysis	are	often	used	in	conjunction	with	each	other.	Indeed,	the	two	techniques	are	highly	complementary.	However,	they	describe	distinct	approaches	to	validating	data	input.	Heres	a	look	at	the
similarities	and	differences	between	the	two.	1.	SimilaritiesEquivalence	partitioning	and	boundary	value	analysis	make	a	great	pair.	Here	are	some	of	the	similarities	between	both	techniques.They	are	both	black	box	testing	techniques,	meaning	the	focus	on	inputs	and	outputs,	which	can	be	tested	without	a	priori	knowledge	of	the	applications	source
code.They	are	both	part	of	a	thorough	approach	to	testing	inputsThey	both	help	testers	strike	a	balance	between	comprehensive	test	coverage	without	writing	an	excessive	amount	of	test	cases.	2.	DifferencesTo	explore	the	differences	between	equivalence	partitioning	and	boundary	value	analysis,	we	need	to	look	at	each	in	isolation.Equivalence
partitioningDivides	input	data	into	equivalence	classes	that	should	result	in	similar	system	outputsUses	a	single	representative	value	from	each	class	and	tests	the	system	with	that	valueIt	is	concerned	with	identifying	valid	and	invalid	equivalence	classes	Boundary	value	analysisTests	the	values	at	the	boundaries	or	edges	of	equivalence	classesTest	a
number	of	values,	including	minimum,	maximum,	and	values	on	either	side	of	the	boundaryLooks	for	errors	that	are	found	on	the	edge	of	boundaries	Equivalence	partitioning	and	boundary	value	analysis	examplesTo	help	cement	your	understanding	of	equivalence	partitioning	and	boundary	value	analysis,	here	are	some	examples.Equivalence
partitioning	example:Lets	say	that	you	have	an	input	box	for	car	registrations.	Typically,	US	car	registration	plates	have	between	6	and	seven	characters.	For	the	sake	of	simplicity,	well	discount	specialty	number	plates.Valid	data	=	Plates	6	or	7	charactersInvalid	data	=	Plates	with	>6	or	>7	characters.	Boundary	value	analysis	example:Using	the
same	number	plate	example	as	above,	boundary	analysis	will	testValid	data	=	Plates	with	6	or	7	charactersInvalid	data	=	Plates	with	5	or	8	characters,	and	in	some	scenarios,	4	and	9	characters	Boundary	value	analysis	examplePerhaps	the	best	way	to	fully	understand	the	concept	is	by	looking	at	another	boundary	value	analysis	example	or	two.
Boundary	value	testing	example	#1To	explore	boundary	value	testing	in	more	detail,	lets	look	at	an	example	of	an	age	verification	domain.We	have	a	box	where	the	user	can	enter	their	age.Boundary	values	are:	IS	YOUR	COMPANY	IN	NEED	OF	ENTERPRISE	LEVEL	TASK-AGNOSTIC	SOFTWARE	AUTOMATION?	Minimum	age	=	18Maximum	age	=
120	Boundary	test	cases	example:There	are	a	total	of	six	test	cases:17,	18,	and	19,	which	are	below	minimum,	minimum,	and	above	minimum,	respectively119,	18,	and	19,	which	are	below	the	maximum,	maximum,	and	above	the	maximum,	respectively	Boundary	value	testing	example	#2.In	our	next	boundary	testing	example,	well	explore	a	website
with	a	minimum	value	purchase	discount	of	20%	on	orders	of	$100	and	more.In	this	example,	a	purchase	of	over	$600	leads	to	a	25%	discount.	The	boundary	value	test	will	deal	with	inputs	between	$100	and	$600.Boundary	values	are:Minimum	qualifying	discount	=	$100Maximum	qualifying	discount	=	$600	Boundary	test	cases	example:Again,	we
generate	a	total	of	six	test	cases,	which	are:$99.99,	$100,	and	$100.01,	which	are	below	minimum,	minimum,	and	above	minimum,	respectively$599.99,	$600,	and	$600,01,	which	are	below	the	maximum,	maximum,	and	above	the	maximum,	respectively	Is	boundary	testing	in	software	testing	accurate?In	the	research	paper	Black	Box	Testing	with
Equivalence	Partitioning	and	Boundary	Value	Analysis	Methods,	the	authors	explore	using	equivalence	partitioning	and	boundary	value	analysis	to	test	an	academic	information	system	for	Mataram	University	in	Indonesia.The	authors	used	the	popular	open-source	testing	tool	Selenium	for	its	tests	and	ran	a	total	of	322	test	cases.	Equivalence	testing
and	boundary	value	analysis	unearthed	about	80	failed	cases,	which	led	to	a	roughly	75:25	ratio	of	valid	to	invalid	test	scores.	Overall,	using	a	combination	of	equivalence	partitioning	and	BVA	in	software	testing	led	to	thorough	and	helpful	testing	for	the	software.	Best	boundary	value	testing	toolsWhile	dedicated	boundary	testing	software	tools	are
rare,	there	are	many	notable	testing	tools	that	are	capable	of	the	job.#3.	TestCaseLabTestCaseLab	is	a	cloud-based	test	management	tool	that	can	help	with	BVA	testing.	The	software	allows	teams	to	create	and	manage	test	cases	from	its	intuitive	and	attractive-looking	UI.	TestCaseLab	is	flexible	and	feature-packed,	but	it	has	its	constraints,
including	limited	reporting	and	customization	options.	#2.	Micro	Focus	UFT	OneMicro	Focus	UFT	One	is	a	software	testing	tool	with	a	focus	on	functional	and	regression	testing.	It	supports	different	platforms,	devices,	and	API	testing	and	offers	strong	integration	options.	It	offers	both	no-code	and	keyword-driven	test	creation	and	can	help	teams
build	boundary	value	analysis	test	cases	with	ease.	There	are	some	limitations	you	need	to	consider,	such	as	a	steep	learning	curve	and	a	lack	of	power	when	compared	with	tools	like	ZAPTEST.	#1.	ZAPTESTZAPTEST	is	a	comprehensive	software	automation	testing	tool	with	advanced	RPA	capabilities.	Its	built	to	provide	testers	with	a	user-friendly
and	robust	suite	of	test	automation	tools	that	can	help	verify	software	in	a	variety	of	ways,	including	with	BVA	in	software	testing.Some	of	the	most	compelling	use	cases	for	ZAPTEST	to	help	boundary	value	analysis	include	test	case	generation,	test	data	handling,	test	execution,	and	reporting	and	analysis.	With	a	range	of	templates	and	a	high	level	of
customization	combined	with	no-code	test	case	creation,	ZAPTEST	users	can	quickly	and	easily	create	and	manage	robust	test	cases	for	all	types	of	boundary	analysis.On	top	of	test	case	generation	and	management,	ZAPTESTs	RPA	capabilities	can	help	testing	teams	with	their	boundary	value	analysis	testing	in	other	ways.	For	example,	you	can
automate	test	case	execution,	generate	test	data,	and	build	powerful	integrations	with	other	testing	tools.	Tips	for	boundary	value	testingCombine	boundary	value	analysis	with	equivalence	partitioning	to	ensure	your	test	cases	cover	various	input	scenariosUse	invalid	input	scenarios	(i.e.,	negative	testing)	to	ensure	you	verify	how	the	software
handles	errors	and	unexpected	inputsInvest	time	into	identifying	boundary	values	for	different	data	types	like	text,	numbers,	Boolean,	etc.Prioritize	boundary	value	testing	for	critical	functionalities	or	areas	where	errors	are	more	likely	to	occurUse	realistic	data	that	represents	the	kind	of	data	your	users	will	input	into	your	domains.	Final
thoughtsBoundary	value	analysis	is	a	useful	functional	testing	approach.	When	you	have	an	input	domain,	you	need	to	check	that	it	accepts	valid	data	and	sends	error	messages	when	it	receives	invalid	data.	Boundary	analysis	testing	helps	verify	that	functionality	in	an	efficient	way	by	building	only	the	test	cases	required	for	comprehensive
testing.Boundary	testing	looks	at	values	in	or	around	the	acceptable	range	and	verifies	how	the	system	responds	to	these	inputs.	The	upshot	is	lots	of	saved	time	and	reduced	effort	because	you	dont	need	to	build	redundant	test	cases.	In	the	fast-paced	world	of	software	development,	where	deadlines	seem	to	come	thick	and	fast,	testing	teams	need	all
the	help	they	can	get.	Download	post	as	PDF	The	page	you	are	looking	for	is	no	longer	here,	or	never	existed	in	the	first	place	(bummer).	You	can	try	searching	for	what	you	are	looking	for	using	the	form	below.	If	that	still	doesn't	provide	the	results	you	are	looking	for,	you	can	always	start	over	from	the	home	page.	We	already	know	that	Black	box
testing	involves	validating	the	system	without	knowing	its	internal	design.	We	have	also	discussed	the	pitfalls	of	Equivalence	partitioning	and	how	they	can	fail	at	partition	boundaries.	In	case	you	haven't	read	our	article	on	Equivalence	Partition,	I	would	highly	recommend	to	read	it	before	you	read	this	one.	In	this	article,	we	will	discuss	another	black
box	testing	technique	known	as	Boundary	Value	Analysis.	We	will	also	see	how	this	technique	compliments	Equivalence	partitioning.What	is	Boundary	Value	Analysis?How	to	do	Boundary	Value	Analysis?Boundary	Value	Analysis	with	Equivalence	PartitioningPitfalls	of	Boundary	value	AnalysisWhat	is	Boundary	Value	Analysis?The	basis	of	Boundary
Value	Analysis	(BVA)	is	testing	the	boundaries	at	partitions	(Remember	Equivalence	Partitioning	!).	BVA	is	an	extension	of	equivalence	partitioning.	However,	this	is	useable	only	when	the	partition	is	ordered,	consisting	of	numeric	or	sequential	data.	The	minimum	and	maximum	values	of	a	partition	are	its	boundary	values.We	have	seen	that	there	are
high	chances	of	finding	the	defects	at	the	boundaries	of	a	partition	(E.g.,	A	developer	using	>10	instead	of	>=	10	for	a	condition).	Equivalence	partitioning	alone	was	not	sufficient	to	catch	such	defects.	Therefore,	a	need	to	define	a	new	technique	that	can	detect	anomalies	at	the	boundaries	of	the	partition	arose.	It	is	how	Boundary	value	analysis
came	into	the	picture.Boundary	value	analysis	can	perform	at	all	test	levels,	and	its	primarily	used	for	a	range	of	numbers,	dates,	and	time.How	to	Do	Boundary	Value	Analysis?Now	that	we	have	got	some	idea	on	boundary	value	analysis	let's	understand	how	to	derive	test	conditions	using	this	technique.	We	will	refer	to	the	same	example	of	gym	form
(Refer	to	our	article	on	Equivalence	Partitioning)	where	we	need	to	enter	Age.The	first	step	of	Boundary	value	analysis	is	to	create	Equivalence	Partitioning,	which	would	look	like	below.Now	Concentrate	on	the	Valid	Partition,	which	ranges	from	16-60.	We	have	a	3	step	approach	to	identify	boundaries:Identify	Exact	Boundary	Value	of	this	partition
Class	-	which	is	16	and	60.Get	the	Boundary	value	which	is	one	less	than	the	exact	Boundary	-	which	is	15	and	59.Get	the	Boundary	Value	which	is	one	more	than	the	precise	Boundary	-	which	is	17	and	61.If	we	combine	them	all,	we	will	get	below	combinations	for	Boundary	Value	for	the	Age	Criteria.Valid	Boundary	Conditions	:	Age	=	16,	17,	59,
60Invalid	Boundary	Conditions	:	Age	=	15	61,It's	straightforward	to	see	that	valid	boundary	conditions	fall	under	Valid	partition	class,	and	invalid	boundary	conditions	fall	under	Invalid	partition	class.Can	you	figure	out	why	we	have	not	used	16.1,	15.9,	59.9,	and	60.1	as	the	boundary	increment	and	decrement	values?	It's	a	concept	that	has	an
insufficient	explanation	in	most	of	the	articles.	Therefore,	let's	take	another	example	to	explain	this.	Assume	that	you	are	entering	your	weight	on	a	website.	Based	on	your	weight	and	height,	the	site	will	tell	you	the	Body	Mass	Index	(BMI).	You	can	enter	values	from	30	to	150	kg	in	the	weight	input	field.	The	weight	input	field	only	allows	natural
numbers	i.e.,	positive	integers!In	this	case,	if	you	will	create	the	boundaries	using	the	same	method	-	you	will	end	up	withValid	Boundary	Conditions	:	Age	=	30,	31,	149,	150Invalid	Boundary	Conditions	:	Age	=	29,	151Now	consider	the	same	scenario,	but	the	weight	input	field	allows	decimal	numbers	up	to	1	decimal	place.	In	this	case,	the	boundary
conditions	will	come	as:Valid	Boundary	Conditions	:	Age	=	30,	30.1,	149.9,	150Invalid	Boundary	Conditions	:	Age	=	29.9,	150.1Did	you	see	the	difference?	We	take	the	minimal	acceptable	value	on	either	side	of	the	boundary.	If	we	take	the	value	as	30.01,	then	we	end	up	testing	the	software	for	two	decimals	where	the	requirement	is	one	decimal
place.	It	is	a	separate	test	condition	and	should	not	be	mixed	up	with	Boundary	value.Measurement	of	the	Boundary	coverage	for	a	partition	can	happen	as	the	number	of	boundary	values	tested	divided	by	the	total	number	of	boundary	test	values	identified.Boundary	Value	Analysis	with	Equivalence	PartitioningWe	have	got	a	fair	understanding	of
Boundary	Value	Analysis	now.	So,	let's	see	how	we	can	combine	it	with	Equivalence	partitioning	to	get	a	full	set	of	test	conditions.Coming	back	to	our	earlier	example,	let's	review	the	diagram	again.The	range	is	from	16	-	60,	and	Boundary	Value	analysis	gives	us	test	conditions	as	15,	16,	17,	59,	60,	61.	If	you	have	a	close	look,	don't	you	think	we	have
already	covered	Valid	Equivalence	partitioning	by	covering	up	17,	59,	and	Invalid	Equivalence	Partitioning	by	covering	15	and	61?	After	all	Equivalence	partitioning	says	that	we	should	choose	a	number	between	16-60	for	valid	partition	and	less	than	16	or	more	than	60	for	invalid	partition.	So,	if	the	boundary	value	is	already	covering	Equivalence
partitioning,	why	do	we	need	partitioning	as	a	separate	technique?	It	is	a	concept	that	is	not	clear	to	most	of	the	folks,	and	not	many	articles	have	explained	it	clearly.Theoretically,	Boundary	value	has	indeed	covered	Equivalence	partition,	but	we	still	need	a	partition.	If	we	only	apply	Boundary	value,	and	it	fails,	we	will	never	know	whether	the	edge
condition	failed,	or	the	entire	partition	failed.	Let's	comprehend	it	with	the	help	of	an	example.	Continuing	with	our	gym	form,	let's	assume	the	developer	has	written	below	logic	:If	(age	<	=	17)	Then	Don't	allow	Gym	MembershipIf	(age	>	60)	Then	Don't	allow	Gym	MembershipIf	you	look	at	the	logic,	you	will	realize	that	the	logic	should	have	been	If
(age	=16	and	age	=	0	&&	b	>=	0	&&	c	<	0)	{	System.err.println("Overflow!");	}	if	(a	<	0	&&	b	<	0	&&	c	>=	0)	{	System.err.println("Underflow!");	}	return	c;	}}On	the	basis	of	the	code,	the	input	vectors	of	[a,b]	are	partitioned.	The	blocks	we	need	to	cover	are	the	overflow	statement	and	the	underflow	statement	and	neither	of	these	2.	That	gives
rise	to	3	equivalent	classes,	from	the	code	review	itself.	Demonstrating	Boundary	Values	(Orange)we	note	that	there	is	a	fixed	size	of	integer	hence:-MIN_VALUE	x	+	y	MAX_VALUEWe	note	that	the	input	parameter	a	and	b	both	are	integers,	hence	total	order	exists	on	them.When	we	compute	the	equalities:-x	+	y	=	MAX_VALUEMIN_VALUE	=	x	+
ywe	get	back	the	values	which	are	on	the	boundary,	inclusive,	that	is	these	pairs	of	(a,b)	are	valid	combinations,and	no	underflow	or	overflow	would	happen	for	them.On	the	other	hand:-x	+	y	=	MAX_VALUE	+	1gives	pairs	of	(a,b)	which	are	invalid	combinations,Overflow	would	occur	for	them.	In	the	same	way:-x	+	y	=	MIN_VALUE	-	1gives	pairs	of
(a,b)	which	are	invalid	combinations,Underflow	would	occur	for	them.Boundary	values	(drawn	only	for	the	overflow	case)	are	being	shown	as	the	orange	line	in	the	right	hand	side	figure.For	another	example,	if	the	input	values	were	months	of	the	year,	expressed	as	integers,	the	input	parameter	'month'	might	have	the	following	partitions:	...	-2	-1	0	1
..............	12	13	14	15	--------------|-------------------|-------------------invalid	partition	1	valid	partition	invalid	partition	2The	boundary	between	two	partitions	is	the	place	where	the	behavior	of	the	application	changes	and	is	not	a	real	number	itself.	The	boundary	value	is	the	minimum	(or	maximum)	value	that	is	at	the	boundary.	The	number	0	is	the	maximum
number	in	the	first	partition,	the	number	1	is	the	minimum	value	in	the	second	partition,	both	are	boundary	values.	Test	cases	should	be	created	to	generate	inputs	or	outputs	that	will	fall	on	and	to	either	side	of	each	boundary,	which	results	in	two	cases	per	boundary.	The	test	cases	on	each	side	of	a	boundary	should	be	in	the	smallest	increment
possible	for	the	component	under	test,	for	an	integer	this	is	1,	but	if	the	input	was	a	decimal	with	2	places	then	it	would	be	.01.	In	the	example	above	there	are	boundary	values	at	0,1	and	12,13	and	each	should	be	tested.Boundary	value	analysis	does	not	require	invalid	partitions.	Take	an	example	where	a	heater	is	turned	on	if	the	temperature	is	10
degrees	or	colder.	There	are	two	partitions	(temperature10,	temperature>10)	and	two	boundary	values	to	be	tested	(temperature=10,	temperature=11).Where	a	boundary	value	falls	within	the	invalid	partition	the	test	case	is	designed	to	ensure	the	software	component	handles	the	value	in	a	controlled	manner.	Boundary	value	analysis	can	be	used
throughout	the	testing	cycle	and	is	equally	applicable	at	all	testing	phases.^	Craig,	Rick	David;	Jaskiel,	Stefan	P.	(2002).	Systematic	Software	Testing.	Artech	House.	pp.155156.	ISBN9781580537926.	Retrieved	February	25,	2024.The	Testing	Standards	Working	Party	websiteRetrieved	from	"	updated	on	July	7,	2023Software	testing	or	rather
exhaustive	software	testing	is	a	very	time	and	resource-intensive	activity.	In	order	to	effectively	test	any	application	in	the	best	possible	time	and	with	optimal	resources,	we	use	different	test	design	techniques.	One	such	technique	is	boundary	value	analysis.In	this	article,	we	will	explore	this	testing	technique	along	with	an	example	and	also	check	its
advantages	and	disadvantages.Boundary	value	analysis	is	a	black-box	testing	technique.	It	is	closely	associated	with	equivalence	class	partitioning.	In	this	technique,	we	analyze	the	behavior	of	the	application	with	test	data	residing	at	the	boundary	values	of	the	equivalence	classes.By	using	the	test	data	residing	at	the	boundaries,	there	is	a	higher
chance	of	finding	errors	in	the	software	application.Lets	consider	the	same	example	we	used	in	the	equivalence	partitioning	tutorial.	An	application	that	accepts	a	numeric	number	as	input	with	a	value	between	10	to	100.	While	testing	such	an	application,	we	will	not	only	test	it	with	values	from	10	to	100	but	also	with	other	sets	of	values	like	less
than	10,	greater	than	10,	special	characters,	alphanumeric,	etc.For	increasing	the	probability	of	finding	errors	instead	of	picking	random	values	from	those	classes,	we	can	pick	the	values	at	the	boundaries	like	below-Equivalence	ClassesTest	Data	using	Boundary	Value	AnalysisNumbers	between	10	to10010,	100Numbers	less	than	109Numbers
greater	than	100101It	is	easier	and	faster	to	find	defects	using	this	technique.	This	is	because	the	density	of	defects	at	boundaries	is	more.Instead	of	testing	will	all	sets	of	test	data,	we	only	pick	the	one	at	the	boundaries.	So,	the	overall	test	execution	time	reduces.The	success	of	the	testing	using	this	technique	depends	on	the	equivalence	classes
identified,	which	further	depends	on	the	expertise	of	the	tester	and	his	knowledge	of	the	application.	Hence,	incorrect	identification	of	equivalence	classes	leads	to	incorrect	boundary	value	testing.Applications	with	open	boundaries	or	applications	not	having	one-dimensional	boundaries	are	not	suitable	for	this	technique.	In	those	cases,	other	black-
box	techniques	like	Domain	Analysis	are	used.With	this,	we	have	come	to	the	end	of	this	article.	If	you	have	any	questions,	please	ask	in	the	comment	section.	You	can	also,	check	out	the	complete	software	testing	tutorial	here	Complete	Software	Testing	Tutorial.Practically,	exhaustive	testing	for	each	set	of	test	data	is	not	practicableowing	to	time
and	financial	constraints,	particularly	when	there	is	a	vastpool	of	input	combinations.We	need	a	simple	method	or	specific	approaches	for	intelligentlyselecting	test	cases	from	a	pool	of	test	cases	such	that	all	testsituations	are	covered.To	do	this,	we	employ	two	approaches:	Equivalence	Partitioning	andBoundary	Value	Analysis	testing
procedures.Software	testing,	which	may	be	done	manually	or	automatically,	is	essentialfor	a	bug-free	program.	Manual	testing	is	the	most	common	way	forevaluating	the	functioning	of	software	applications,	despite	the	fact	thatautomated	testing	saves	testing	time.	We'll	go	through	the	most	significantmanual	software	testing	approaches	here.What
are	the	different	types	of	software	testing	techniques?Software	testing	techniques	are	a	set	of	practices	that	aid	in	theimprovement	of	the	overall	quality	and	effectiveness	of	any	softwaredevelopment	project.	It	aids	in	the	development	of	better	test	cases,	whichare	a	collection	of	circumstances	or	variables	that	a	tester	uses	to	assess	ifa	system	under
test	meets	requirements	or	functions	properly.	To	increasethe	efficacy	of	the	tests,	many	testing	methodologies	are	used	as	part	ofthe	testing	process.	Black	Box	Test	Design	is	a	testing	approach	that	examines	the	functionalityof	the	Application	Under	Test	(AUT)	without	looking	at	the	underlying	codestructure,	implementation	details,	or	knowledge	of
the	software's	internalroutes.	This	form	of	testing	is	fully	based	on	software	specifications	andneeds.	We	just	test	the	software	system's	input	and	output	in	Black	BoxTesting,	and	we	don't	worry	about	the	program's	inner	workings.	We	couldsave	a	lot	of	testing	time	and	have	strong	test	case	coverage	by	adoptingthis	strategy.Five	types	of	test
techniques	are	often	used	Analysis	of	Boundary	Values	(BVA)Partitioning	by	Equivalence	ClassDecision	Table	Testing	is	a	kind	of	testing	that	uses	a	table	to	makedecisions.Transition	of	StateGuessing	ErrorOnly	Boundary	Value	Analysis	and	Equivalence	Class	Partitioning	arecovered	in	depth	in	this	article.	The	last	three	strategies	will	be	discussed
infuture	publications.BVA	(Boundary	Value	Analysis)BVA	is	another	Black	Box	Test	Design	Technique	that	is	used	to	detectflaws	at	the	input	domain's	borders	(tests	the	behavior	of	a	program	at	theinput	boundaries)	rather	than	in	the	center.	The	main	concept	behindboundary	value	testing	is	to	choose	input	variable	values	that	are	minimum,	just
above	minimum,	just	below	the	minimum,	nominal	value,	justbelow	maximum,	maximum,	and	just	above	maximum.	That	is,	there	aretwo	borders	for	each	range:	the	lower	boundary	(the	start	of	the	range)	andthe	higher	boundary	(the	end	of	the	range),	and	the	boundaries	representthe	start	and	end	of	each	valid	division.	We	should	create	test	cases
thatput	the	program's	functioning	to	the	test	at	its	limits,	using	values	just	withinand	beyond	the	limits.	Stress	and	negative	testing	both	include	boundaryvalue	analysis.We'll	learn	the	following	in	this	guideWhat	is	Boundary	Testing	and	How	Does	It	Work?What	is	Equivalent	Class	Partitioning,	and	how	does	it	work?Example	1	Boundary	Value	and
EquivalenceExample	2	Boundary	Value	and	EquivalenceWhat	are	the	Benefits	of	Equivalence	and	Boundary	AnalysisTesting?What	is	Boundary	Testing	and	How	Does	It	Work?The	technique	of	testing	between	extreme	ends	or	borders	betweendivisions	of	input	data	is	known	as	boundary	testing.These	extreme	endpoints,	such	as	Start-End,	Lower-
Upper,Maximum-Minimum,	Just	Inside-Just	Outside	values,	are	referred	toas	boundary	values,	and	boundary	testing	is	used	to	test	them.In	normal	boundary	value	testing,	the	main	concept	is	to	choose	inputvariable	values	that	are	MinimumJust	a	little	over	the	bare	minimuma	minimal	amount	of	moneyJust	below	the	upper	limitMaximumEquivalence
Class	Partitioning	is	useful	in	boundary	testing.After	Equivalence	Class	Partitioning,	follows	Boundary	Testing.Partitioning	by	EquivalenceEquivalence	Partitioning,	also	known	as	Equivalence	Class	Partitioning,	isa	black	box	testing	approach	that	may	be	used	at	all	stages	of	softwaredevelopment,	including	unit,	integration,	and	system	testing.
Because	ofthe	minimal	number	of	test	cases,	this	approach	divides	input	data	unitsinto	comparable	divisions	that	may	be	utilized	to	produce	test	cases,reducing	the	amount	of	time	necessary	for	testing.It	splits	program	input	data	into	several	equivalent	data	types.When	there	is	a	range	in	the	input	field,	you	may	use	this	strategy.Example	1	Boundary
Value	and	EquivalenceConsider	the	Order	Pizza	Text	Box's	behavior.	Pizza	values	ranging	from	1	to	10	are	deemed	legitimate.	The	message	"success"	is	shown.While	values	11	to	99	are	deemed	invalid	for	ordering,	an	error	noticestating	"Only	10	Pizza	may	be	ordered"	will	show.The	test	situation	is	as	follows	Any	number	submitted	in	the	Order	Pizza
form	that	is	larger	than	10(let's	say	11)	is	deemed	invalid.Any	number	that	is	less	than	1	and	is	0	or	below	is	deemed	invalid.The	numbers	1	to	10	are	accepted	as	acceptable.Any	three-digit	number,	such	as	-100,	is	unusable.We	can't	test	all	of	the	potential	values	since	it	would	result	in	more	than100	test	cases.	To	solve	this	issue,	we	use	the
equivalence	partitioninghypothesis,	which	divides	the	potential	values	of	tickets	into	groups	or	sets,as	illustrated	below,	where	the	system	behavior	is	similar.Equivalence	Partitions	or	Equivalence	Classes	are	the	split	sets.	Then,	fortesting,	we	choose	just	one	value	from	each	split.	This	approach	is	basedon	the	idea	that	if	one	condition/value	in	a
partition	passes,	all	others	will	aswell.	Similarly,	if	one	condition	in	a	partition	fails,	the	partition's	other	criteria	will	also	fail.Boundary	Value	Analysis	(BVA)	is	a	technique	for	determining	the	boundaries	between	equivalence	partitionsInstead	of	testing	one	value	for	each	partition	in	our	previous	equivalencypartitioning	example,	you	will	check	the
values	at	the	partitions	like	0,	1,	10,11,	and	so	on.	You	test	values	at	both	valid	and	invalid	limits,	as	you	cansee.	Range	checking	is	another	name	for	boundary	value	analysis.Boundary	value	analysis	(BVA)	and	equivalence	partitioning	are	closelyconnected	and	may	be	utilized	jointly	at	all	levels	of	testing.Example	2:	Boundary	Value	and
EquivalenceThe	password	box	below	allows	a	minimum	of	6	and	a	maximum	of	10	characters.As	a	consequence,	the	findings	for	partitions	0-5,	6-10,	11-14	should	becomparable.Test	Scenario	#Test	Scenario	DescriptionExpected	Outcome1In	the	password	area,type	0	to	5	charactersthe	system	should	notaccept	anything	else.2Fill	in	the	passwordarea
with	6	to	10charactersthe	system	shouldallow3In	the	password	area,type	11	to	14charactersthe	system	shouldreject	itExample	3:	The	Number	1	to	10	should	be	accepted	in	the	input	box.The	Boundary	Value	Test	Cases	may	be	found	here.Boundary	Value	=	0	-	System	should	not	allow1	is	the	boundary	value	-	Acceptance	by	the	system	is	required.2	is
the	boundary	value	-	Acceptance	by	the	system	is	required.9	is	the	boundary	value	-	Acceptance	by	the	system	is	required.10	is	the	boundary	value	-	Acceptance	by	the	system	is	required.11	is	the	boundary	value	-	It	is	not	acceptable	for	the	system	to	acceptWhat	are	the	advantages	of	using	Boundary	Value	Analysis?Consider	the	following	scenario:	a
developer	creates	code	for	an	amounttext	field	that	only	accepts	and	transfers	numbers	between	100	and	5000.The	test	engineer	double-checks	it	by	typing	99	into	the	amount	text	boxand	pressing	the	transfer	button.	Because	the	boundary	values	are	alreadyset	to	100	and	5000,	it	will	display	an	error	notice	that	99	is	an	incorrect	testcase.	The	text
form	will	not	transfer	the	amount	since	99	is	less	than	100.Below	is	a	collection	of	both	valid	and	invalid	test	scenarios.Test	Cases	That	WorkEnter	100,	which	is	the	minimum	value.Enter	the	value	101,	which	is	the	minimum	value	plus	one.Enter	the	number	4999,	which	is	the	maximum	possible	value.Enter	the	value	5000,	which	is	the	highest
possible	value.Unreliable	Test	CasesEnter	99,	which	is	the	minimum	value.Enter	the	amount	5001,	which	is	the	maximum	value	plus	one.What	are	the	Benefits	of	Equivalence	and	Boundary	Analysis	Testing?This	kind	of	testing	is	used	to	break	down	a	huge	number	of	testcases	into	smaller,	more	manageable	portions.Very	explicit	criteria	for	choosing
test	scenarios	that	do	not	jeopardizetesting	effectiveness.Appropriate	for	applications	that	need	a	lot	of	calculations	and	have	alot	of	variables/inputs.Equivalence	Partitioning	is	divided	into	two	sections1.	Pressman	Rule	If	the	input	consists	of	a	range	of	numbers,	create	test	cases	for	one	valid	and	two	incorrect	values.If	the	input	consists	of	a
collection	of	values,	provide	test	cases	for	all	legalvalue	sets	as	well	as	two	incorrect	values.Consider	the	following	scenario	Consider	any	online	shopping	website,	where	each	product	should	beidentified	by	a	unique	ID	and	name.	Users	may	search	for	products	usingeither	the	product	name	or	the	product	ID.	You	may	look	at	a	list	of	itemswith
product	IDs	and	see	whether	any	of	them	are	Laptops	(valid	value).Create	test	cases	for	both	true	and	false	values	if	the	input	is	Boolean.Consider	the	following	example	web	page,	which	has	text	fields	for	firstname,	last	name,	and	email	address,	as	well	as	radio	buttons	for	genderthat	employ	Boolean	inputs.The	relevant	value	should	be	set	as	the
input	if	the	user	clicks	on	any	of	theradio	buttons.	If	the	user	selects	a	different	choice,	the	input	value	must	bechanged	to	reflect	the	new	selection	(and	the	previously	selected	optionshould	be	deselected).When	a	radio	button	option	is	selected,	it	is	considered	as	TRUE,	andwhen	none	is	selected,	it	is	treated	as	FALSE.	Furthermore,	two	radiobuttons
should	not	be	chosen	at	the	same	time;	if	they	do,	this	isconsidered	a	problem.2.	Method	of	Practice	Divide	the	range	of	values	into	comparable	portions	for	all	of	the	valid	values	while	also	ensuring	that	two	incorrect	values	are	tested.ConclusionsWhen	it	is	virtually	hard	to	evaluate	a	huge	pool	of	test	cases	separately,boundary	analysis	testing	is
performed.The	methods	employed	include	boundary	value	analysis	and	equivalencepartitioning	testing.First,	you	separate	a	collection	of	test	conditions	into	a	partition	that	may	beexamined	in	Equivalence	Partitioning.The	borders	between	equivalence	divisions	are	next	tested	using	BoundaryValue	Analysis.Appropriate	for	applications	that	need	a	lot
of	calculations	and	includevariables	that	reflect	physical	quantities.	Clients	hire	our	full-time	team	of	senior	consultants	to	supercharge	dev	teams	&	build	out	software	and	platforms	from	scratch.Our	U.S.-based	consultants	develop	full-stack	software	using	Java,	.NET,	and	JavaScript,	integrating	smoothly	with	your	team	to	deliver	reliable,	high-
quality	solutions.From	design	to	launch,	we	assemble	teams	of	architects,	software	developers,	project	managers,	and	testers	to	manage	your	software	projects	with	precision.	Our	specialized	experts	drive	strategic	goals	through	landscape	analysis,	digital	transformation,	and	Proof	of	Concept	to	propel	your	business	forward.Clients	consistently
choose	Keyhole	for	our	expert-driven	solutions	and	commitment	to	excellence.	Last	year,	78%	of	our	projects	were	with	repeat	clients,	highlighting	the	trust	and	value	we	provide.100%	U.S.-Based	Employee	Consultants	Ensuring	reliable,	high-quality	solutions.17+	Years	of	Average	Experience	Bringing	deep	expertise	and	technical	skill.Client
Retention	of	4+	Years	Clients	frequently	seek	to	expand	engagement	scope.Average	Consultant	Tenure	of	Nearly	5	Years	Providing	consistency	and	strong	project	alignment.Keyhole	consultants	are	flexible	&	friendly	software	developersexpert	services	without	the	ego.At	Keyhole,	we	partner	with	businesses	to	create	tailored	software	solutions	that
drive	growth	and	efficiency.	Our	consultants	bring	deep	expertise	to	a	variety	of	services,	from	custom	software	development	to	cloud	migrations,	AI	integration,	and	digital	transformation.	Whether	you	need	to	modernize	legacy	systems	or	optimize	your	platform	infrastructure,	we	have	the	skills	and	experience	to	meet	your	specific	needs,	delivering
impactful,	scalable	results.Creating	custom	software	and	mobile	applications	tailored	to	unique	business	needs	leveraging	Java,	.NET,	and	JavaScript	technologies.Ensure	resilience	with	DevOps,	CI/CD	pipelines,	infrastructure-as-code,	and	architectures	designed	for	high	availability	and	fault	tolerance.Leveraging	scalable	cloud	solutions,	including
migrations,	hybrid	architectures,	and	containerized,	cloud-native	applications	on	AWS,	Azure,	and	Google	Cloud.Recognized	for	superior	expertise	by	industry	leaders	and	trusted	by	top	organizations.Our	experience	with	the	Keyhole	development	team	has	been	excellent.	They	integrated	seamlessly	with	our	existing	team	and	immediately	began	to
contribute	to	our	projects.	One	of	the	biggest	differences	compared	to	other	consulting	teams	I	have	worked	with	was	their	commitment	to	fully	solving	the	problem	from	start	to	finish.	They	were	committed	to	the	work	and	consistently	showed	it	by	finding	the	best	solutions	for	the	business	and	taking	ownership	of	their	contributions.-	Michael	Stark,
Engineering	Manager	-	Brightway	InsuranceThis	project	was	one	of	many	engagements	between	[client]	&	Keyhole	over	the	last	several	years,	which	was	a	testament	to	their	quality	of	work,	their	ability	to	put	together	a	highly	competent	roster	to	meet	the	needs	of	the	project	scope,	and	the	emphasis	they	place	on	maintaining	a	valued	relationship
with	their	clients.IT	Manager,	Leading	Midwest	BankWe	recently	pushed	out	a	major	update	to	our	product	and	our	Keyhole	team	members	were	instrumental	in	helping	accomplish	this	effort.	The	team	did	well	and	Im	happy	to	convey	this.Director	of	Software	Engineering	&	Development,	Northwell	Health...We	have	a	very	high	respect	for	[Keyhole
Consultant	Name],	and	he	has	bailed	us	out	of	several	potentially	large,	critical	problems.He	has	done	very	well	for	us	and	has	reflected	well	on	your	company	too."Engineering	Manager,	Railroad	System	CorporationKeyhole	helps	bridge	the	knowledge	gap	between	[client]s	staff,	whose	job	is	to	have	a	skill	set	to	run	the	business,	and	the	leading-
edge	technology	Keyhole	has	exposure	to.Sr.	IT	Manager,	Financial	FirmKeyhole	has	earned	various	partnership	designations	due	to	a	demonstrated	level	of	expertise	with	particular	platforms	which	allows	Keyhole	to	provide	clients	preferred	pricing.	At	Keyhole,	we	believe	in	not	just	solving	technical	challenges,	but	also	educating	and	empowering
the	tech	community.	Our	thought	leadership	shares	expert	insights,	industry	trends,	and	best	practices	to	help	you	stay	ahead	in	the	world	of	software	development:From	deep	dives	into	emerging	technologies	to	practical	guidance	on	scaling	systems,	our	articles	and	videos	offer	valuable	resources	for	developers,	architects,	and	IT	leaders.	Stay
informed,	stay	ahead,	and	see	how	Keyhole	can	help	guide	your	next	project.See	All	Expert	Software	Insights	

What	is	boundary	value	analysis	and	equivalence	partitioning.	What	is	the	primary	objective	of	boundary	value	analysis.	What	is	boundary	value	analysis	in	software	engineering.	What	is	the	purpose	of	boundary
value	analysis	in	software	testing.	What	is	boundary	value	analysis	in	manual	testing.	What	is	the	purpose	of	boundary	value	analysis.	What	is	2	point	boundary	value	analysis.	What	is	boundary	value	analysis	with
example.	What	is	boundary	value	analysis	in	software	testing	with	example.	What	is	a	key	benefit	of	boundary	value	analysis.	What	is	boundary	value	analysis	in	testing.	What	is	boundary	value	analysis	provide	an

example.	What	is	the	purpose	of	boundary	value	analysis	in	testing.	What	is	boundary	value	analysis	(bva).

